Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.

Identifieur interne : 000E05 ( Main/Exploration ); précédent : 000E04; suivant : 000E06

TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.

Auteurs : Ariadne Vlahakis [États-Unis] ; Martin Graef [États-Unis] ; Jodi Nunnari [États-Unis] ; Ted Powers [États-Unis]

Source :

RBID : pubmed:25002487

Descripteurs français

English descriptors

Abstract

The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis and, in this capacity, is part of an adaptive nutrient deprivation response. Here we demonstrate that during amino acid starvation TOR also operates independently as a positive regulator of autophagy through the conserved TORC2 and its downstream target protein kinase, Ypk1. Under these conditions, TORC2-Ypk1 signaling negatively regulates the Ca(2+)/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing eIF2α kinase, Gcn2, and to promote autophagy. Our work reveals that the TORC2 pathway regulates autophagy in an opposing manner to TORC1 to provide a tunable response to cellular metabolic status.

DOI: 10.1073/pnas.1406305111
PubMed: 25002487
PubMed Central: PMC4115538


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.</title>
<author>
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Graef, Martin" sort="Graef, Martin" uniqKey="Graef M" first="Martin" last="Graef">Martin Graef</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nunnari, Jodi" sort="Nunnari, Jodi" uniqKey="Nunnari J" first="Jodi" last="Nunnari">Jodi Nunnari</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616 tpowers@ucdavis.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis</wicri:regionArea>
<wicri:noRegion>Davis</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25002487</idno>
<idno type="pmid">25002487</idno>
<idno type="doi">10.1073/pnas.1406305111</idno>
<idno type="pmc">PMC4115538</idno>
<idno type="wicri:Area/Main/Corpus">000E17</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E17</idno>
<idno type="wicri:Area/Main/Curation">000E17</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E17</idno>
<idno type="wicri:Area/Main/Exploration">000E17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.</title>
<author>
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Graef, Martin" sort="Graef, Martin" uniqKey="Graef M" first="Martin" last="Graef">Martin Graef</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nunnari, Jodi" sort="Nunnari, Jodi" uniqKey="Nunnari J" first="Jodi" last="Nunnari">Jodi Nunnari</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616 tpowers@ucdavis.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis</wicri:regionArea>
<wicri:noRegion>Davis</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (pharmacology)</term>
<term>Autophagy (drug effects)</term>
<term>Calcineurin (metabolism)</term>
<term>Glycogen Synthase Kinase 3 (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (pharmacologie)</term>
<term>Autophagie (effets des médicaments et des substances chimiques)</term>
<term>Calcineurine (métabolisme)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Glycogen Synthase Kinase 3 (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcineurin</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Amino Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Autophagie</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcineurine</term>
<term>Complexes multiprotéiques</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides aminés</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Modèles biologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis and, in this capacity, is part of an adaptive nutrient deprivation response. Here we demonstrate that during amino acid starvation TOR also operates independently as a positive regulator of autophagy through the conserved TORC2 and its downstream target protein kinase, Ypk1. Under these conditions, TORC2-Ypk1 signaling negatively regulates the Ca(2+)/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing eIF2α kinase, Gcn2, and to promote autophagy. Our work reveals that the TORC2 pathway regulates autophagy in an opposing manner to TORC1 to provide a tunable response to cellular metabolic status. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25002487</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<Issue>29</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jul</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.</ArticleTitle>
<Pagination>
<MedlinePgn>10586-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1406305111</ELocationID>
<Abstract>
<AbstractText>The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis and, in this capacity, is part of an adaptive nutrient deprivation response. Here we demonstrate that during amino acid starvation TOR also operates independently as a positive regulator of autophagy through the conserved TORC2 and its downstream target protein kinase, Ypk1. Under these conditions, TORC2-Ypk1 signaling negatively regulates the Ca(2+)/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing eIF2α kinase, Gcn2, and to promote autophagy. Our work reveals that the TORC2 pathway regulates autophagy in an opposing manner to TORC1 to provide a tunable response to cellular metabolic status. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vlahakis</LastName>
<ForeName>Ariadne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graef</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nunnari</LastName>
<ForeName>Jodi</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Powers</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616 tpowers@ucdavis.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM086387</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM086387</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM097432</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM062942</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM097432</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007377</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM062942</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.26</RegistryNumber>
<NameOfSubstance UI="D038362">Glycogen Synthase Kinase 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.12.1</RegistryNumber>
<NameOfSubstance UI="C068124">MCK1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D019703">Calcineurin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019703" MajorTopicYN="N">Calcineurin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038362" MajorTopicYN="N">Glycogen Synthase Kinase 3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Atg8</Keyword>
<Keyword MajorTopicYN="N">Gcn4</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25002487</ArticleId>
<ArticleId IdType="pii">1406305111</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1406305111</ArticleId>
<ArticleId IdType="pmc">PMC4115538</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2013 Sep;24(18):2918-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23904270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2013 Jul;36(1):7-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23708729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Feb 13;6(3):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 30;440(7084):637-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16554755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2000 Aug 9;3(2):83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11015603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 27;151(5):1025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jul;21(13):4347-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Jun;7(6):1131-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Nov 1;20(21):5971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2001;35:647-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11700296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):30675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Feb;14(2):477-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med. 2003 Mar-Apr;9(3-4):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12865942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:39-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Sep;21(12):1057-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15449304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1983;101:167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6310320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1985 Sep;5(9):2349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3915540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Jun 14;65(6):949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2044154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7376-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1651503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1991 Oct 31;180(2):1159-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1659397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Feb 7;68(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1739968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Oct;119(2):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 Oct 25;333(1-2):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8224160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Mar;124(6):903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8132712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Aug;15(8):4497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7623840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 15;11(24):3432-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9407035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Apr 1;13(7):798-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10197980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 May;10(5):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10233150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Oct 18;147(2):435-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10525546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 5;279(45):46527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 9;280(36):31582-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Feb;12(2):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17295840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17717517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Dec 15;67(24):11712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18089801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Feb;7(2):148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18249174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2009 Jan;16(1):1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Jun 16;29(12):2082-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20473272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Sep;12(9):842-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Oct;6(7):879-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20647741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Nov 19;285(47):36984-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 25;286(8):6128-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21131356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(2):e17412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21364763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Jun 1;30(11):2101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21468027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2011 Sep;10(9):1533-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Feb;193(2):467-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 May 9;368(19):1845-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23656658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2014;5:e997</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24434520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
</region>
<name sortKey="Graef, Martin" sort="Graef, Martin" uniqKey="Graef M" first="Martin" last="Graef">Martin Graef</name>
<name sortKey="Nunnari, Jodi" sort="Nunnari, Jodi" uniqKey="Nunnari J" first="Jodi" last="Nunnari">Jodi Nunnari</name>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25002487
   |texte=   TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25002487" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020